Pan’s research focuses on the synthesis and atomic scale characterization of multifunctional materials with an emphasis on probing atomic scale structure and properties of material interfaces and nanostructures under controlled boundary conditions and environments. His group’s goal is to obtain a fundamental understanding of the atomic level structure-property relationships of nanoengineered materials, especially oxide heterostructures, ferroelectrics/multiferroics, nanocatalysts and two-dimensional (2D) functional materials. He is developing novel four-dimensional scanning transmission electron microscopy and momentum-resolved vibrational electron microscopy to probe atomic scale structure, chemical and physical properties of single atom catalysts, 2D strongly correlated oxides, ferroelectrics/multiferroics, and complex concentrated materials with multiple principal elements.